Amorphous Shungite Carbon: A Natural Medium for the Formation of Fullerenes

V. A. Reznikov and Yu. S. Polekhovskiĭ

St. Petersburg State University, St. Petersburg, 199164 Russia Received March 6, 2000

Abstract—A comparative analysis of data on the density, porosity, and intermolecular space of high-carbon shungites, graphite, glassy carbon, and C_{60} fullerite gave an estimate of the fullerene content in the shungite samples which agrees with the values obtained by electrochemical and polar solvent extraction methods. A low yield of fullerenes in the extracts obtained with nonpolar solvents is explained by the high polarity and large adsorption energy of fullerenes and related compounds. © 2000 MAIK "Nauka/Interperiodica".

The methods of C_{60} and C_{70} fullerene synthesis developed by the beginning of 1990s suggested that these compounds may be present in carbon-containing rocks. Indeed, shortly after the publication of reliable data on the physicochemical properties of C_{60} and C_{70} , these fullerenes were found in high-carbon shungites [1, 2]. These shungites still remain the only natural objects known to contain aromatic carbon-containing molecules. Up to now, no investigations were undertaken to determine the concentration, molecular composition, and distribution of fullerenes and/or their derivatives in shungites (Sh) with various structures of the carbon-containing substance (C_{sh}) . This information is of value for elucidating the nature of C_{sh} and identifying the component responsible for the medical and ecological properties of Sh.

Filippov *et al.* [3] pointed out that there must be a relationship between the properties of shungite carbon C_{sh} , its fullerene-like structure, and the content of C_n fullerenes. Yushkin [4] suggested that a common mechanism may be responsible for the formation of C_{sh} and C_n . These hypotheses are justified provided that the concentration of fullerenes is related to the C_{sh} structure and correlated, at least in certain types of Sh, with the content of completely amorphized carbon phase [3, 5], the latter being the most probable initial material for the C_n synthesis.

Previously [6], we have presented evidence of a commercially significant C_n content (about 1%) in Sh-3. The purpose of this work was to perform a comparative analysis of some macrophysical properties of C_{sh} , its closest structural analog—glassy carbon (GC) [7, 8], and C_{60} fullerene, with a view to estimating the limiting content of C_n and elucidating a model of metamorphism in the shungite carbon structure.

For a carbon unit cell size of 1.0 Å [9] and a covalent atomic radius of $C^0 = 0.77$ Å [10], carbon atoms in C_{60} can be considered as C⁺ ions surrounded by delocalized

 π -states (C⁺ e^{-}). Resonance excitation of a solvated C₆₀ molecule in solution [11] must involve transitions into states with the electron affinity energy $E_a C^+$ evaluated [12] as $3E_aC^0 = 3.81$ eV. Taking into account the vibrational transitions in C_{60} (272, 496, and 776 cm⁻¹ [11, 13]), this $E_a C^+$ value corresponds to the energy of the π band maximum in the spectra of solutions. According to the quantum-chemical calculations [14], the energy position of the π -band maximum for a non-associated C_{60} molecule was evaluated as 3.43 eV, which is 65 meV below the electron work function [15]. The difference coincides, to within 3 meV, with the energy of "breathing" oscillations of the highly symmetric C₆₀ molecule. Note also that 3.435 eV is the middle (arithmetic mean) value between $E_a C^0 = 1.27 \text{ eV} [10]$ and the ionization potential of C_{60} (5.6 eV), which confirms the above C_{60} model in the form of mutually bound C⁺ ions surrounded by a cloud of π -electrons.

The non-associated C₆₀ molecule admits the analogy between their delocalized π -electrons and the s-d electron states of small-size icosahedral metallic particles [9, 13]. For example, the ionization potential and the surface plasmon energy of Ag₁₃ [16] virtually coincide with the corresponding values for C_{60} , while the maximum of the plasma absorption band of Ag₆ (considered as an elementary particle with metal bonds [17]) coincides with the calculated energy of the π -band maximum of the non-associated \bar{C}_{60} . A difference between C₆₀ and small metallic particles consists in (i) the form of the surface electron density distribution and (ii) the possibility of shape changing in the C_{60} carbon unit cell. The scattering of electromagnetic waves on these objects is determined by collective oscillations of the conduction electrons [18], while the plasma oscillations divide into π - σ - and π -states [9, 15, 19]. The π -states being localized upon adsorption on an electroneutral surface, the C_{60} molecule (as a solid particle)